
40 Thammasat Engineering Journal, Vol. 2 No. 1, January-June 2014

Lessons from Heartbleed
Chanathip Namprempre

Department of Electrical and Computer Engineering, Faculty of Engineering,
Thammasat University, Rangsit Campus, Pathum Thani 12121

Abstract

 Heartbleed is a major security flaw affecting many computer systems. It is easy to mount and leaves few traces. It
allows an attacker to extract a portion of the memory contents of the targeted computer, which could be either a server
or a client. Cryptography offers many tools that could have been used to mitigate the negative repercussions of this
breach. Unfortunately, evidence suggests that not many of these tools were used by servers at the time of the announcement
of Heartbleed. This paper describes what these tools are and how they could have helped. The goal is to raise awareness
so that users and system administrators alike can understand the benefits that existing, well-known cryptographic tools
have to offer to cope with practical attacks.
Keywords: public key cryptography, forward security, password-based cryptography.

1. Introduction

 Heartbleed is a major security flaw affecting many
computer systems. Its existence was announced in April
2014. Since then, it has ignited much interest among diverse
groups of people, from server administrators, cryptographers,
and programmers to common users and policy makers.
 Heartbleed is easy to mount and leaves few traces.
It allows an attacker to extract a portion of the memory
contents of the targeted computer, which could be either
a server or a client. The memory contents vulnerable to
exposure could include many things such as the long-lived
secret key of the server, the usernames and passwords of
the users, and other information that may be contained in
the payload being exchanged during the session.
 The repercussions from the exposure of sensitive
information are often costly to address. It would have been
better if more had been done to limit the scope of damage
in the event that secrets are exposed.
 Cryptography offers many tools that could have been
used to mitigate the negative repercussions of this breach.
Unfortunately, evidence suggests that not many of these
tools were used by servers at the time of the announcement

of the attack. This paper describes what these tools are and
how they could have helped improve the situation. The
goal is to raise awareness so that users and system
administrators alike can see and understand the benefits
that existing, wellknown cryptographic tools have to offer
to cope with practical attacks.

2. Background

 Heartbleed exploits a flaw in OpenSSL, an implementation
of the SSL/TLS protocol. In this section, we first discuss
in general terms the need for and the basic ideas behind
the SSL/TLS protocol.

 2.1 Public key cryptography and the secure channel
 Consider a typical interaction between a client and
a server. The client is often a web browser operated by
a user who would like to access resources on the server.
The server ensures that an incoming request for resources
indeed comes from a legitimate user by asking the user
to type in his or her username and the corresponding
password, which have presumably been registered with
the server prior to the current communication session. Once
the server verifies that the username and password are

วศิวกรรมสารธรรมศาสตร์ ปีที� 2 ฉบบัที� 1 มกราคม-มิถุนายน 2557 41

two parties, public-key cryptography is used to obtain a
shared secret key between the parties, a process known
as key exchange (KE). Bootstrapping from the public-secret
key pairs of the participants, a key exchange protocol allows
the two parties to arrive at a shared secret known only to
them even if an adversary may, at the very least, observe
the entire sequence of exchanges during the protocol’s
execution.
 Currently, the most common kind of key exchange
used in practice authenticates only one of the participants,
namely the server. Specifically, after completing the key
exchange protocol with a server, the client can be somewhat

confident that the server is who it claims to be while the
server has no idea who the client is. In most cases, the
identity of the client is ascertained after the key exchange
protocol completes via the submission of an appropriate
username- password pair during the data exchange.
 The level of confidence that the client can have about
the identity of the server after the completion of the key
exchange protocol depends on the quality of the certificate

that the server uses. Essentially, a certificate is a bundle
of data about its owner. Its main role is to bind the owner’s
public key and its name together. Other relevant information
is included, for example, the expiration date of the certificate
and the issuer’s name. The binding is implemented via
digital signatures. Specifically, the authenticity of a certificate
is asserted by its issuer by having the latter sign it. A client
who is in possession of a server’s certificate can check
whether the certificate is trustworthy by verifying the
accompanying digital signature under the public key of
the issuer, thus creating a chain of trust: the client who
starts out trusting the authenticity of the issuer’s public key
can now trust the authenticity of the server’s public key.
 Therefore, the certificate of an entity is only as
trustworthy as the certificate of its issuer. Two important
consequences of this trust dependency are the following.

 – Once the secret key corresponding to the public
key contained in the certificate of the issuer is

correct, it allows the client to access the resources the user
is authorized for.
 We should note that even though this method is neither
the only nor the best way to authenticate communicating
parties and to protect the ensuing exchanges of information
between them, it is by far the most popular and will be the
focus of this paper.
 THE KEY-THEN-DATA-EXCHANGE APPROACH. Since
the username-password pair that a user sends to a server
is the information advantage that distinguishes a legitimate
user from someone without authorization for the requested
resources, it should not be sent over the public network in
the clear, lest it be easily captured by packet sniffers. A
secure channel for transmission is needed. For the purposes
of this paper, we can conceptually regard a secure channel
as a pipe between two parties in which data being exchanged
through the pipe are encrypted and authenticated. (It has
long been accepted that “encryption without integrity
checking is all but useless” [6].)
 Given that symmetric-key cryptosystems are much
more efficient than public-key ones, the bulk of the data
exchange is almost always implemented with symmetric-
key cryptographic primitives. However, requiring that
every pair of client and server on the Internet possesses
a shared secret key (a bitstring known only to the two of
 them and none others) before they can securely communicate
is clearly impractical.
 In practice, public-key cryptography is used to address
this problem. A party holds a pair of public and secret keys
which are generated in such a way that

– if the public key is used to encrypt a message to
obtain a ciphertext, the secret key can be used to
decrypt the ciphertext, and

– if the secret key is used to sign a message, the
public key can be used to verify the signature.

 There can be many other properties depending on the
cryptosystems in question, but these two are the most well-
known. For the purpose of building a secure channel between

42 Thammasat Engineering Journal, Vol. 2 No. 1, January-June 2014

exposed, none of the certificates signed by the
issuer after the exposure can be trusted.

– Care must be taken when a self-signed certificate

is used. A self-signed certificate is one for which
the issuer and the certificate owner are the same
entity. Hence, in effect, a self-signed certificate
that asserts that a particular public key pk truly
belongs to an entity A says that we should believe
that A owns pk simply because A says so. Clearly,
asking for an entity to vouch for its own trusthworthi-
ness is in general not a good idea.

 We remark that scenarios in which self-signed
certificates are useful exist. (For example, an
administrator in an enterprise network can manually
install the self-signed certificate of a server in the
enterprise on the employees’ computers so as to
allow client programs to be able to verify the
authenticity of the certificate.) Nonetheless, in
general, self- signed certificates should be employed
carefully and minimally or be avoided altogether.

 We emphasize that trusting that a public key belongs
to an entity simply means that we believe that the owner
of the public key knows the secret key corresponding to
the public key. In a system in which a break-in has not
occurred, this means that the only entity that knows the
secret key should be the owner of the matching public
key. In contrast, in the event of a breach, the assertion that
the public key truly belongs to its owner becomes beside
the point because an adversary may now also have the
secret key. The information advantage that previously had
distinguished the legitimate owner of the public key from
the adversary has vanished.
 PROTECTING WEB COMMUNICATION VIA SSL/TLS.
The Transport Layer Security (TLS) protocol is the successor
of the Secure Socket Layer (SSL) protocol. Most web
servers that support secure communication (that is, in simple
terms, ones that allow clients to connect to them with the
prefix https://...) support both protocols. We do not distinguish

between the two in our discussion in this paper and simply
refer to the SSL and the TLS protocols collectively as SSL/
TLS.
 Consider the interaction between a client and a server
using the key-then-data-exchange approach discussed
above. When the interaction is performed via the SSL/TLS
protocol, the key exchange part corresponds to the handshake

protocol while the data exchange part corresponds to the
record protocol. As in any real implementation of a
cryptographic protocol, there are many tasks to be performed
other than the main ones that the protocol is designed to
accomplish. For example, in this case, the main tasks are
key exchange and data exchange, but SSL/TLS must also
allow the participants to negotiate which cryptographic
algorithms and protocols (and which of the available
versions) they would like to use for the key negotiation
(e.g. Diffie-Hellman, Elliptic Curve Diffie-Hellman, etc.)
and data exchange (AES CBC, AES GCM, etc.).

3. The Heartbleed Attack

 There are many implementations of SSL/TLS. One
of the most popular implementation is the open source
library called OpenSSL [22]. The Heartbleed breach is
due to a bug, which we will refer to simply as the Heartbleed
bug, in widely-adopted versions (namely, versions 1.0.1
through 1.0.2beta) of this library [23].
 THE CAUSE. The Heartbleed bug was borne out of the
need to prevent the connection between a client and a server
from getting prematurely torn down during a session.
Although SSL/TLS operates over the Transmission Control
Protocol (TCP), which is connection-oriented, and thus
needs not be concerned with this problem, the Datagram
Transport Layer Security (DTLS) protocol, whose goal
is to achieve similar security guarantees as SSL/TLS over
datagram protocols, does. In response to this need, the
Heartbeat Extension was proposed in RFC 6520 as a
protocol for keeping connections alive for both DTLS and
TLS [18]. As it happened, in an attempt to check for the

วศิวกรรมสารธรรมศาสตร์ ปีที� 2 ฉบบัที� 1 มกราคม-มิถุนายน 2557 43

“heartbeats” of the participants during the session so as
to keep the current connection alive, an OpenSSL developer
inadvertently introduced the Heartbleed bug [17].
 THE HEARTBLEED BUG. Suppose a client sends a
server a Heartbeat Request and expects a Heartbeat Response
to be returned. RFC 6520 describes what must happen.

 In a normal situation, the client would send the server
a payload (e.g. a string “hello”) and the corresponding size
(e.g. 5 bytes). (A fixed-size, random padding is also sent,
but this padding is inconsequential with respect to the
Heartbleed bug.) In an attack, however, the adversary sends
a Heart-beatRequest that contains a small payload along
with a purported size that is larger than the actual size of
the payload. This attack works because the code that deals
with the HeartbeatRequest simply trusts that the purported
size is correct and du- tifully copies and returns the data
in its memory, starting at the pointer to the received payload,
for the amount specified by the purported size which can
be as large as 64K bytes [18]. Thus, when an attacker sends
a small payload and a large purported size, it gets back
not only the payload it has sent but also the data that reside
in the server’s memory immediately after the payload ends,
for the number of bytes specified by the size parameter.
It is the extraneous data returned here that is the crux of
the vulnerability. For example, it has been demonstrated
that the targeted server’s long-term secret key can be
obtained through this attack [21].
 Not surprisingly, attacks exploiting the Heartbleed
bug are effective against both servers and clients. Some

have termed a Heartbleed attack against clients Reverse

Heartbleed [2]. In particular, an attacker can set up a
malicious server and trick a user to establish an SSL/TLS
connection to it. Once the connection is established, the
server can send a malicious Heartbeat-Request to the client
and extract a portion of the client’s memory contents. In
effect, this variation of the Heartbleed attack adds power
to garden-variety phishing scams.
 Although Reverse Heartbleed is a simple variation
of Heartbleed, its attack surface is much larger than that
of Heartbleed for many reasons. First, clients can run on
many platforms, ranging from home computers and mobile
devices to embedded systems. This means that patching
clients is much more challenging compared to patching
servers. Second, client systems are often less well-maintained,
and maintenance is often done by end users. This means
that vulnerabilities may be undetected or neglected for
years. Considering the prevalent use of computing devices
in this day and age, Reverse Heartbleed may end up doing
more damage over a longer period of time than Heartbleed
itself.

4. Repercussions of Heartbleed

 Once an adversary is able to get a portion of the
memory contents of the target, the amount and the kind of
damage it can inflict can be large and varied. Mitigation
and prevention depend on what kind of information the
adversary has obtained from the memory.
 A LONG-TERM SECRET KEY IS STOLEN FROM MEMORY.
One of the most feared situations is that adversary A has
obtained the server’s long-term secret key sk

s
 from the

server’s memory. Clearly, any server that has been afflicted
by the Heartbleed bug must, at the very least, change its
longterm secret key. In this section, we discuss additional
problems and approaches to mitigation that also need to
take place.
 Breaking KE. The long-term secret key is used in
the key exchange protocol, in which the server’s identity

44 Thammasat Engineering Journal, Vol. 2 No. 1, January-June 2014

is authenticated and a session key K is established. If A has
captured the protocol flows during the key exchange process,
then an adversary may be able to use sk

s
 to obtain K . Armed

with K , the adversary can decrypt any ciphertext that it
has captured in the past for this session. A cryptographic
tool that, if it had been used from the beginning, could have
prevented A from obtaining K is called a forward-secure

key exchange protocol. This type of protocol is described
in Section 5.1.
 Forging certificates. Once armed with sk

s
, the adversary

A can sign anything it would like to on behalf of the server.
Consequently, any signature purported to be that of the
server should no longer be trusted as having been generated
by the server. Unfortunately, this includes any certificate
that the server has already issued. Therefore, any certificate
in the chain downstream from that issued by the server
whose secret key has been compromised must be revoked,
an undesirable process that incurs a large overhead. A
cryptographic tool that could have eliminated the need for
certificate revocation is a forward-secure signature scheme.

This type of scheme is described in Section 5.2.
 Forging signatures on documents. The authenticity
of documents that the server has signed so far using the
compromised sk

s
 can no longer be trusted. As with certificates,

a tool to address this problem is a forward-secure signature
scheme.
 We should note that although the problems mentioned
throughout this section focus on what happens to servers,
many are also applicable to clients. It bears repeating that
even users that do not run servers may be affected by the
Heartbleed bug. Through a Reverse Heartbleed attack, a
user who has been tricked into making a SSL/TLS connection
to a malicious server mounting the attack could end up
with his or her long-term secret key stolen. Any application
that uses this compromised secret key would be affected.
For example, if the secret key is also used for signing digital
documents, all previously generated signatures would no
longer be trustworthy. Forward- secure signatures can help

address this particular problem.
 CREDENTIALS ARE STOLEN FROM MEMORY.
If an adversary can obtain certain credentials directly from
memory, the damage depends on how the credentials are
to be used. We discuss the two most common types of
credentials here.
 Username and password. Although this information
allows the adversary to log in as a legitimate user to the
targeted services, in practice the damage resulting from
the exposure of a user’s password is often not limited to
only the services currently under attack. The reason is that
many users reuse their passwords for many different
services, consequently rendering those services vulnerable
also. A cryptographic tool that could have helped prevent
this is password-based authenticated key exchange described
in Section 5.4.
 Credit card number and other info. If an adversary
can get all of the information necessary to charge a credit
card in an online transaction (in general, this includes
the credit card number, the last three digits of the sequence
of numbers on the back of the card, and the expiration
date), then it can charge any purchases to the card at will,
until the card is cancelled. A cryptographic tool that could
have helped prevent this is limited-use credit card numbers.
Such numbers are described in Section 5.5.
 A PSEUDORANDOM NUMBER GENERATOR
SEED IS STOLEN FROM MEMORY. Most programs
that implement secure functionality need to use randomness.
One of the most common ways to programmatically generate
randomness is to use a pseudorandom bit generator (PRG).
This primitive requires that a seed, a short sequence of
random bits, is given as an input so that a longer sequence
of pseudorandom bits can be deterministically computed
and output. If the output is computed deterministically
without using any secrets (such as hidden state or a secret
key), then anyone in possession of the right seed can easily
compute the output.
 If the stolen seed had been used to generate a session

วศิวกรรมสารธรรมศาสตร์ ปีที� 2 ฉบบัที� 1 มกราคม-มิถุนายน 2557 45

key, then the adversary can use the seed to compute the
session key then decrypt any ciphertext it has collected for
this session. A cryptographic tool that could have addressed
this is a forward- secure pseudorandom bit generator. Such
generators are described in Section 5.3.
 A SESSION TICKET IS STOLEN FROM MEMORY.
A session ticket key is used to protect a session ticket

containing state information about the current connection
so that the server can resume a SSL/TLS session without
performing the full handshake, thus reducing the server
load. If a session ticket key is stolen, then an adversary can
(1) decrypt previously-issued session tickets and (2) generate
new session tickets. For the first threat, since session tickets
contain state information about a session, the potential
damage depends on what the server decides to include in
a ticket. The second threat, however, is unlikely to be
much of an issue since session ticket keys are often freshly
generated at server reboots.
 Clearly, there are other types of information that, once
stolen from memory, can cause damage to the victim. We
only consider the ones mentioned above since they have
the most damaging repercussions.
 A CAVEAT. Although there are many types of
sensitive data that, once stolen, can lead to extensive
damage as discussed above, we emphasize here that, in
general, it is not a simple matter for an attacker to successfully
pick and choose the type of data to steal at will. In fact,
when the Heart- bleed bug was first discovered, the initial
impression among security experts was that a server’s
long-term secret key could not be stolen through Heartbleed,
although, as it happened, this impression was quickly
proven to be false [20]. Given the level of sophistication
required of an adversary to ensure that the desired data
end up residing in the appropriate region of the memory
in order to mount the attack, it would be arguably much
simpler and more fruitful for an attacker to instead resort
to social engineering attacks such as phishing.

5. Prevention through Cryptography

 In this section, we discuss what could have been: what
kinds of damage could be mitigated if certain types of
cryptosystems had been deployed. Although it is no secret
that these cryptosystems exist and that they could help
tremendously in the event of secret exposure such as the
Heartbleed attack, the fact, unfortunately, is that most
systems do not deploy these cryptosystems.
 Also, as seen in the previous section, many of the
cryptographic tools we mention are forward-secure primi-
tives. In terms of exposure-resilient cryptographic tools,
we limit the scope of this paper to these primitives for
brevity and simplicity. However, we point out here that
forward security is not the only technique that can deal
with exposure of secrets. Other tools include key-insulated
cryptosystems [14], intrusion-resilient cryptosystems,
threshold cryptosystems [11, 12], and proactive cryptosystems
[15]. The first two groups require an additional computational
device to achieve some weaker forms of security before

and after the secret exposure, rather than only before the
exposure as is the case with forward security. The last two
groups require that multiple (usually more than two) parties
work closely together when carrying out a task. These
tools are also valid alternatives for dealing with Heart-
bleed. They are, however, likely to be more complicated
to set up in practice compared to forward-secure cryptosystems
since they require additional coordination between a server
and a helper device or between multiple servers.

 5.1 Forward-secure key exchange

 The helpful guanrantee with forward-secure key
exchange is that an adversary who obtains the server’s
long-term secret key at time t still would not know any
session key that was generated before time t.
 The most popular KE protocol for SSL/TLS among
server system administrators is the RSA-based KE protocol.
In this protocol, the client chooses a value for the session
key K, encrypts K with the server’s public key pk, then

46 Thammasat Engineering Journal, Vol. 2 No. 1, January-June 2014

sends the result to the server. Upon receiving this result,
the server decrypts it using the long-term secret key sk to
obtain K. Consequently, RSA-based KE protocol does not
offer forward security: if the long-term secret key sk becomes
exposed at some point, an adversary who has captured the
data exchanged between the client and the server in the
past can use sk to decrypt the appropriate segment of the
protocol flows to obtain K and can in turn use K to decrypt
the data encrypted with K.
 In contrast, the KE protocol implemented for OpenSSL
that is forward secure is the Diffie-Hellman Ephemeral

(DHE) protocol [13]. Unfortunately, this protocol is not
popular among system administrators. The most commonly
cited reason is the claim that it is too computationally
intensive. DHE is based on the basic Diffie-Hellman key
exchange protocol shown in Fig. 1. The session key obtained
at the end of the protocol is K.
 The basic protocol shown in Fig. 1 does not keep
adversary A from pretending to be the client or the server.
For example, A can pretend to be a server “S” by simply
engaging in the protocol exchanges with the client using
“S” as its name. Digital signatures is used to address this
problem: the server signs its protocol flow using its long-
term secret key; the client then verifies, using the server’s
public key, that the protocol flow it receives has indeed
been generated by the server.

 5.2 Forward-secure digital signatures

 As previously discussed, when a long-term secret key
sk is exposed, the authenticity of all signatures purportedly
generated using sk can no longer be trusted. This includes
all certificates signed by the owner of sk. They must now
be revoked. This problem can be addressed via forward-
secure digital signatures.
 In a forward-secure digital signature scheme [3],
time is divided into periods, e.g. months, days, or weeks.
The forward security guarantee is that, despite a long- term
secret key exposure at time period t, signatures generated
before t can still be trusted while those generated during
and after t cannot be. The crux lies in the deterministic key

update algorithm. Suppose that initially the server’s secret
and public keys are sk and pk, respectively. At each time
period, sk gets updated while pk remains fixed. Since pk
is unchanged, anyone can verify signatures using the single
value of pk regardless of which time period the signature
was generated. The secret key update algorithm is designed
to be easily computed going forward (e.g. from time period
t to t + 1) but difficult to go backward (e.g. from t + 1 to
t). Consequently, if adversary A obtains sk

t
, it can generate

signatures on behalf of the server for time periods after t
but not before (assuming that the secret keys for the time
periods before t have been properly erased). Thus, certificates
that have been issued (i.e. signed) before t remain trustworthy,
and revocation can be avoided.

 5.3 Forward-secure pseudorandom bit generator

 Originally proposed by Bellare and Yee [5], a forward-
secure pseudorandom bit generator (FS PRG) takes a state
and returns the next state and the output. The way it is used
is the following. The initial state is taken to be the original
random seed. When a pseudorandom bits is needed, one
invokes the PRG to update the seed and to obtain the
pseudorandom bits to be used. The security guarantee is
that, if adversary A obtains the current state s, it still would
not be able to distinguish pseudorandom bitstrings that

Fig. 1. The basic Diffie-Hellman key exchange. The cyclic
group G generated by g is of order m. We make
G, g, and m public. The notation s S means
the value assigned to s is chosen uniform randomly
from the set S. An arrow denotes an assignment.

วศิวกรรมสารธรรมศาสตร์ ปีที� 2 ฉบบัที� 1 มกราคม-มิถุนายน 2557 47

have been output prior to the exposure of the seed from
outputs of a random function. This implies that, at the very
least, A must not be able to obtain the states in the time
periods prior to the exposure.
 In a Heartbleed attack, if an adversary A obtains the
current seed that is used by other cryptographic algorithms,
for example to generate the session key, it can of course
compromise the security of the current session. But if an
FS PRG is used, A would not be able to derive the session
keys for time periods prior to the break-in, thus leaving the
security of these sessions intact.

 5.4 Password-Based Authenticated Key Exchange

 As discussed, since most clients do not have certificates,
the most common authentication mechanism often involves
the user sending his or her username and password to the
server via SSL/TLS. In a Heartbleed attack, if adversary
A obtains the username and password of a user from the
server’s memory, the user has no recourse other than to
change the password.
 If a password-based authenticated key exchange

(PAKE) protocol is used, the user would not need to send
the username and password over to the server and yet be
able to establish a secret session key. In a PAKE protocol,
the server and the user initially share a secret password
pw, perhaps through a registration protocol or through
out-of-band communication. Then, after the protocol
completes, the user and the server end up with a secret
session key. Many PAKE protocols have been proposed
over the years. See for example [1, 4, 7–10].

 5.5 Limited-use credit card numbers

 A credit card number is a valuable piece of information.
One can make purchases by giving a store a credit card
number along with other accompanying information such
as the appropriate expiration date and a “card security code”
or a “card verification code,” a 3-digit code found on the
actual credit card itself. In an online purchase, all these
pieces of information are sent to the server of the merchant.

If the server is under a Heartbleed attack at the time the
transaction occurs, an adversary can obtain this information
from the server’s memory.
 Efforts have been made to limit the damage caused
by credit card number exposure by limiting how long or
how often a single credit card number can be used. These
credit card numbers are sometimes called disposable credit

cards. There are many approaches to implement this concept
[16, 19, 24]. We discuss one simple example here. Rubin
and Wright [16] propose that a user and his or her card
issuer share a secret key K and use it to authenticate and

encrypt the credit card number along with the rest of the
authorizing information and restrictions regarding the
current purchase. The resulting ciphertext C can be used
in place of the credit card number during purchases.
 We emphasize that in this case the information needs
to be both authenticated and encrypted. Secrecy is necessary
because the card number and other information must be
kept secret. Authenticity is necessary because C is used
as a token, and a token that can be minted by anyone,
including in particular an adversary, is not very useful.
 Furthermore, a scheme such as this needs a way to
prevent a replay attack in which an adversary can simply
capture the token C and simply reuse it to make other
purchases. Including timestamps and other purchase-related
information into the payload to be authenticated and
encrypted can address this problem. Rubin and Wright
further discuss this issue in [16].
 We note here that, just like any other technical solution
to real-world problems, there are usability issues associated
with disposable credit cards. Consequently, more than a
decade after their conception, they are still not prevalent.

6. Conclusion

 Over the years, secret exposures have become frequent
to a point where we should consider them to be common
occurrences rather than rare events. Mechanisms that can
mitigate secret exposures are of more importance now than

48 Thammasat Engineering Journal, Vol. 2 No. 1, January-June 2014

ever. Cryptographers must forge ahead and come up with
practical and efficient methods to deal with secret leakage.
Practitioners must consider proposals that may at first
glance seem esoteric and give security the high priority it
deserves.

References

1. M. Abdalla and D. Pointcheval. Simple password- based
encrypted key exchange protocols. In A. Menezes,
editor, CT-RSA 2005, volume 3376 of LNCS, pages
191–208. Springer, Feb. 2005.

2. BBA, Inc. Testing for reverse heartbleed. http://blog.
meldium.com/home/2014/4/10/ testing-for-reverse-
heartbleed, Apr. 10, 2014.

3. M. Bellare and S. K. Miner. A forward-secure digital
signature scheme. In M. J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 431–448. Springer, Aug.
1999.

4. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated
key exchange secure against dictionary attacks. In B.
Preneel, editor, EUROCRYPT 2000, volume 1807 of
LNCS, pages 139–155. Springer, May 2000.

5. M. Bellare and B. S. Yee. Forward-security in private-
key cryptography. In M. Joye, editor, CT- RSA 2003,
volume 2612 of LNCS, pages 1–18. Springer, Apr.
2003.

6. S. Bellovin. Problem areas for the ip security protocols.
In Proceedings of the 6th USENIX Security Symposium
1996, pages 1–16, San Jose, CA, USA, July 22–25,
1996. USENIX Association.

7. S. M. Bellovin and M. Merritt. Encrypted key ex-
change: Password-based protocols secure against
dictionary attacks. In 1992 IEEE Symposium on
Security and Privacy, pages 72–84. IEEE Com- puter
Society Press, May 1992.

8. V. Boyko, P. D. MacKenzie, and S. Patel. Provably
secure password-authenticated key exchange using
Diffie-Hellman. In B. Preneel, editor, EURO- CRYPT

2000, volume 1807 of LNCS, pages 156–171. Springer,
May 2000.

9. E. Bresson, O. Chevassut, and D. Pointcheval. Security
proofs for an efficient password-based key exchange.
In S. Jajodia, V. Atluri, and T. Jaeger, editors, ACM
CCS 03, pages 241–250. ACM Press, Oct. 2003.

10. E. Bresson, O. Chevassut, and D. Pointcheval.
New security results on encrypted key exchange. In F.
Bao, R. Deng, and J. Zhou, editors, PKC 2004, volume
2947 of LNCS, pages 145–158. Springer, Mar. 2004.

11. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung.
How to share a function securely. In 26th ACM STOC,
pages 522–533. ACM Press, May1994.

12. Y. Desmedt and Y. Frankel. Threshold cryptosystems.
In G. Brassard, editor, CRYPTO’89, volume 435 of
LNCS, pages 307–315. Springer, Aug. 1990.

13. T. Dierks and C. Allen. RFC 2246 - The TLS Protocol
Version 1.0. Internet Activities Board, Jan. 1999.

14. Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated
public key cryptosystems. In L. R. Knud- sen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages
65–82. Springer, Apr. / May 2002.

15. R. Ostrovsky and M. Yung. How to withstand mobile
virus attacks. In 10th ACM PODC, pages 51–59. ACM
Press, Aug. 1991.

16. A. D. Rubin and R. N. Wright. Off-line generation of
limited-use credit card numbers. In P. F. Syverson,
editor, FC 2001, volume 2339 of LNCS, pages 196–209.
Springer, Feb. 2001.

17. R. Seggelmann. Git commit diff. http://git.openssl.
org/gitweb/?p=openssl.git;a=commitdiff;h=4817504,
Jan. 1 2012.

18. R. Seggelmann, M. Tuexen, and M. G. Williams.
Transport layer security (TLS) and datagram transport
layer security (DTLS) heartbeat extension. http://tools.
ietf.org/html/rfc6520, Feb. 2012.

19. A. Shamir. Secureclick: A Web payment system with
disposable credit card numbers. In P. F. Syverson,

วศิวกรรมสารธรรมศาสตร์ ปีที� 2 ฉบบัที� 1 มกราคม-มิถุนายน 2557 49

editor, FC 2001, volume 2339 of LNCS, pages 232–242.
Springer, Feb. 2001.

20. N. Sullivan. Answering the critical question: Can
you get private ssl keys using heartbleed? http://blog.
cloudflare.com/answering-the-critical-question-can-
you-get-private-ssl- keys-using-heartbleed, Apr. 11,
2014.

21. N. Sullivan. The results of the cloudflare challenge.
http://blog.cloudflare.com/ the-results-of-the-cloudflare-
challenge, Apr. 11, 2014.

22. The OpenSSL Project. OpenSSL: Cryptography and
SSL/TLS toolkit. http://www.openssl.org.

23. The OpenSSL Project. TLS heartbeat read overrun
(CVE-2014-0160). http://www.openssl.org/news/
secadv_20140407.txt, Apr. 07, 2014.

24. M. Trombly. American express offers disposable credit
card numbers for online shopping. http://www.
computerworld.com/s/article/49788/American_Express_
offers_disposable_ credit_card_numbers_for_online_
shopping, Sept. 7, 2000.

