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Abstract

 Heartbleed is a major security flaw affecting many computer systems.  It is easy to mount and leaves few traces. It 
allows an attacker to extract a portion of the memory contents of the targeted computer, which could be either a server 
or a client. Cryptography offers many tools that could have been used to mitigate the negative repercussions of this 
breach. Unfortunately, evidence suggests  that not  many of these tools were  used by servers at the time of the  announcement 
of Heartbleed. This paper describes what these tools are and how they could have helped. The goal is to raise awareness 
so that users and system administrators alike can understand the benefits that existing, well-known cryptographic tools 
have to offer to cope with practical attacks.
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1.   Introduction

 Heartbleed is a major security flaw affecting many 
computer  systems.  Its  existence was announced  in April  
2014. Since then, it has ignited much interest among diverse 
groups of people, from server  administrators,  cryptographers,  
and programmers  to common users and policy makers.
 Heartbleed  is easy to mount  and leaves few traces. 
It allows an attacker to extract a portion  of the  memory  
contents  of the targeted  computer,  which could be either 
a server or a client. The memory contents vulnerable to 
exposure could include many things such  as the long-lived 
secret key of the server, the usernames and passwords of 
the users, and other information that may be contained in 
the payload being exchanged during the session.
 The repercussions  from the exposure  of sensitive 
information are often costly to address. It would have been 
better if more had been done to limit the scope of damage 
in the event that secrets are exposed.
 Cryptography offers many tools that could have been 
used to mitigate the negative repercussions of this breach. 
Unfortunately, evidence suggests that not many of these 
tools were used by servers at the time of the announcement 

of the attack. This paper describes what these tools are and 
how they could have helped improve the situation. The 
goal is to raise awareness so that users and system  
administrators alike can see and understand the benefits 
that existing, wellknown cryptographic tools have to offer 
to cope with practical attacks.

2. Background

 Heartbleed exploits a flaw in OpenSSL, an implementation  
of the SSL/TLS  protocol. In this  section,  we first  discuss 
in general terms the need for and the basic ideas behind 
the SSL/TLS protocol.

 2.1  Public key cryptography and the secure channel
 Consider a typical interaction between a client  and 
a server.  The  client  is often  a web browser operated by 
a user who would like to access resources on the server. 
The server ensures that an incoming request for resources  
indeed  comes from a legitimate user  by asking  the  user  
to type in his or her username and the corresponding 
password, which have presumably  been registered  with 
the server prior to the current communication session. Once 
the server verifies that the username and password are 
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two parties, public-key cryptography is used to  obtain  a 
shared  secret  key between  the  parties,  a process  known 
as key exchange (KE). Bootstrapping from the public-secret 
key pairs of the participants, a key exchange protocol allows 
the two parties to arrive at a shared secret known only to  
them  even if an adversary  may, at  the very least, observe 
the entire sequence of exchanges during the protocol’s 
execution.
 Currently,  the  most  common kind  of key exchange 
used in practice authenticates only one of the participants, 
namely the server. Specifically, after completing the key 
exchange protocol with a server, the client can be somewhat  

confident that the server is who it claims to be while the 
server has no idea who the client is. In most cases, the 
identity of the client is ascertained after the key exchange 
protocol completes via the submission of an appropriate 
username- password pair during the data exchange.
 The level of confidence that the client can have about 
the identity of the server after the completion of the key 
exchange protocol depends on the quality of the certificate 

that  the  server  uses. Essentially,  a certificate  is a bundle 
of data  about  its  owner. Its main role is to bind the owner’s 
public key and its name together. Other relevant information 
is included, for example, the expiration date of the  certificate  
and the issuer’s name. The binding is implemented via 
digital signatures. Specifically, the authenticity of a certificate 
is asserted by its issuer by having the latter sign it. A client 
who is in possession of a server’s certificate can check 
whether  the certificate  is trustworthy by verifying the 
accompanying digital  signature  under  the  public key of 
the issuer,  thus  creating a chain of trust:  the client who 
starts out trusting the authenticity of the issuer’s public key 
can now trust the authenticity of the server’s public key.
 Therefore,  the certificate of an entity is only as 
trustworthy as the certificate of its issuer. Two important 
consequences of this trust dependency are the following.

 –   Once  the  secret  key  corresponding  to the public 
key contained in the certificate of the issuer is 

correct, it allows the client to access the resources the user 
is authorized for.
 We should note that even though this method is neither 
the only nor the best way to authenticate communicating 
parties and to protect the ensuing  exchanges of information 
between them, it is by far the most popular and will be the 
focus of this paper.
 THE KEY-THEN-DATA-EXCHANGE APPROACH.     Since  
the  username-password pair that  a user  sends  to  a server  
is the information advantage that distinguishes a legitimate 
user  from someone without authorization for the requested 
resources, it should not be sent over the public network in 
the  clear, lest  it be easily  captured  by packet sniffers. A 
secure channel for transmission is needed. For the purposes 
of this paper, we can conceptually regard a secure channel  
as a pipe between two parties in  which data  being  exchanged  
through the pipe are encrypted and authenticated. (It has 
long been accepted that “encryption without integrity  
checking is all but useless” [6].)
 Given that symmetric-key cryptosystems are much 
more efficient than public-key ones, the bulk of the data 
exchange is almost always implemented with symmetric- 
key cryptographic primitives. However, requiring that 
every pair of client and server on the  Internet  possesses  
a shared secret key (a bitstring known only to the two of
 them and none others) before they can securely communicate 
is clearly impractical.
 In practice, public-key cryptography is used to address 
this problem. A party holds a pair of public and secret keys 
which are generated in such a way that

–  if the  public key is used  to encrypt  a message to 
obtain a ciphertext, the secret key can be used to 
decrypt the ciphertext, and

–  if the secret key is used to sign a message, the 
public key can be used to verify the signature.

 There can be many other properties depending on the 
cryptosystems in question, but these two are the most well-
known. For the purpose of building a secure channel between 
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exposed, none of the certificates signed by the 
issuer after the exposure can be trusted.

–  Care must be taken when a self-signed certificate  

is used. A self-signed certificate is one for which 
the issuer and the certificate owner are the same 
entity. Hence, in effect, a self-signed certificate 
that asserts that a particular public key pk truly 
belongs to an entity A says that we should believe 
that A owns pk simply because A says so. Clearly, 
asking for an entity to vouch for its own trusthworthi-
ness is in general not a good idea.

     We remark that scenarios in which self-signed 
certificates are useful exist. (For example, an 
administrator in an enterprise network can manually 
install the self-signed certificate of a server in the  
enterprise  on the  employees’ computers so as to 
allow client programs to be able to verify the 
authenticity of the certificate.) Nonetheless, in 
general, self- signed certificates should be employed 
carefully  and minimally or be avoided altogether.

 We emphasize that trusting that a public key belongs 
to an entity simply means that we believe that the owner 
of the public key knows the secret key corresponding to 
the public key. In a system in which a break-in has not 
occurred, this means that the only entity that knows the 
secret key should be the owner of the  matching  public 
key.  In contrast, in the event of a breach, the assertion  that 
the public key  truly belongs to its owner becomes beside 
the point because an adversary may now also have the 
secret key. The information advantage that previously had 
distinguished the legitimate owner of the public key from 
the adversary has vanished.
  PROTECTING WEB COMMUNICATION VIA SSL/TLS.    
The Transport Layer  Security (TLS) protocol is the successor 
of the Secure Socket Layer (SSL) protocol. Most web 
servers that support secure communication (that is, in simple 
terms, ones that allow clients to connect  to  them  with the 
prefix https://...) support both protocols. We do not distinguish 

between the two in our discussion in this paper and simply 
refer to the SSL and the TLS protocols collectively as SSL/
TLS.
 Consider the interaction between a client  and a  server  
using the key-then-data-exchange approach discussed  
above. When the interaction is performed via the SSL/TLS 
protocol, the key exchange part corresponds to the handshake 

protocol while the  data exchange part  corresponds to  the  
record  protocol. As in any real  implementation of a 
cryptographic protocol, there are many tasks to be performed 
other than the main ones that the protocol is designed  to  
accomplish. For example,  in this case, the main tasks are 
key exchange and data exchange,  but  SSL/TLS  must also 
allow the participants to negotiate which cryptographic 
algorithms and protocols (and which of the available 
versions) they would like to use for the key negotiation 
(e.g. Diffie-Hellman, Elliptic Curve Diffie-Hellman, etc.) 
and data exchange (AES CBC, AES GCM, etc.).

3.  The Heartbleed  Attack

 There  are  many implementations of SSL/TLS. One 
of the most popular implementation is the open source 
library called OpenSSL  [22]. The  Heartbleed  breach  is 
due to a bug, which we will refer to simply as  the  Heartbleed  
bug, in widely-adopted versions  (namely,  versions  1.0.1 
through 1.0.2beta) of this library [23].
 THE CAUSE. The Heartbleed bug was borne out of the 
need to prevent the connection between a client and a server 
from getting prematurely torn down during a session.  
Although  SSL/TLS  operates over the Transmission Control 
Protocol (TCP), which is connection-oriented, and thus 
needs not be concerned with this problem, the  Datagram  
Transport  Layer Security  (DTLS)  protocol,  whose  goal 
is to achieve similar security guarantees as SSL/TLS over 
datagram protocols, does. In response to this need, the 
Heartbeat Extension was proposed in RFC 6520 as a 
protocol for keeping connections alive for both DTLS  and 
TLS  [18]. As  it happened, in an attempt  to  check for the  
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“heartbeats” of the  participants  during the  session  so as  
to keep the  current  connection  alive, an OpenSSL developer 
inadvertently introduced the Heartbleed bug [17].
 THE HEARTBLEED BUG.  Suppose a client sends a 
server a Heartbeat Request  and expects a Heartbeat Response  
to be returned. RFC 6520 describes what must happen.

                       
 In a normal situation, the client would send the server 
a payload (e.g. a string “hello”) and the corresponding  size 
(e.g. 5 bytes). (A fixed-size, random padding is also sent, 
but  this  padding is inconsequential  with respect to the  
Heartbleed bug.) In an attack, however, the adversary sends 
a Heart-beatRequest that contains a small payload along 
with a purported  size that is larger than the actual  size  of 
the  payload. This attack works because the code that deals 
with the HeartbeatRequest simply trusts that the purported 
size is correct and du- tifully copies  and returns  the data 
in its memory, starting at the pointer to the received payload, 
for the amount specified by the  purported  size  which can 
be as large as 64K bytes [18]. Thus, when an attacker sends  
a small  payload and a large purported size, it gets back 
not only the payload it has sent but also the data that reside 
in the server’s memory immediately after the payload ends, 
for the number of bytes  specified  by the size parameter.  
It is the extraneous data returned  here that is the crux of 
the vulnerability. For example, it has been demonstrated 
that the targeted server’s long-term secret key can be 
obtained through this attack [21].
 Not surprisingly, attacks exploiting the Heartbleed  
bug are  effective  against  both servers and clients. Some 

have termed a Heartbleed attack against clients Reverse 

Heartbleed [2]. In particular, an attacker can set up a 
malicious server and trick a user to  establish  an SSL/TLS  
connection to  it.  Once the  connection  is established, the 
server can send a malicious Heartbeat-Request to the client 
and extract a portion of the client’s  memory contents.  In 
effect, this variation of the Heartbleed attack adds power 
to garden-variety phishing scams.
 Although  Reverse  Heartbleed  is a simple variation 
of Heartbleed, its attack surface is much larger than that 
of Heartbleed for many reasons. First, clients can run on 
many platforms,  ranging from home computers and mobile 
devices to embedded systems. This means that patching 
clients is much more challenging compared to patching 
servers. Second, client systems are often less well-maintained, 
and maintenance is often done by end users. This means 
that vulnerabilities may be undetected or neglected for 
years. Considering the prevalent use of computing devices 
in this day and age, Reverse  Heartbleed  may end up doing 
more damage over a longer period of time than Heartbleed 
itself.

4. Repercussions of Heartbleed

 Once an adversary is able to get a portion of the 
memory contents of the target, the amount and the kind of 
damage it can inflict can be large and varied. Mitigation 
and prevention  depend on what  kind of information the 
adversary has obtained from the memory.
 A LONG-TERM SECRET KEY IS STOLEN FROM MEMORY.  
One of the  most  feared situations is that adversary A has 
obtained the server’s  long-term secret key sk

s
  from the 

server’s memory. Clearly, any server that has been afflicted 
by the Heartbleed bug must, at the very least, change its 
longterm secret key. In this section, we discuss additional 
problems and approaches to mitigation that also need to 
take place.
 Breaking KE. The  long-term  secret  key is used in 
the key exchange protocol, in which the server’s  identity  
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is authenticated and a session key K is established. If A has 
captured the protocol flows during the key exchange process,  
then an adversary may be able to use sk

s
 to obtain K . Armed  

with K , the  adversary can decrypt  any ciphertext  that it 
has captured in the past for this session. A cryptographic 
tool that, if it had been used from the beginning, could have 
prevented A from obtaining K is called a forward-secure 

key exchange protocol. This type of protocol is described 
in Section 5.1.
 Forging certificates. Once armed with sk

s
, the adversary 

A can sign anything it would like to on behalf of the server. 
Consequently, any signature purported to be that of the 
server should no longer be trusted as having been  generated 
by the server. Unfortunately, this includes  any certificate  
that  the  server has already  issued. Therefore,  any certificate  
in the  chain downstream  from that issued by the server 
whose secret key has been compromised must be revoked, 
an undesirable process that  incurs a large overhead. A 
cryptographic tool that could have eliminated the need for 
certificate  revocation  is a forward-secure signature scheme. 

This type of scheme is described in Section 5.2.
 Forging signatures  on  documents. The  authenticity 
of  documents   that the server has signed so far using the 
compromised sk

s
 can no longer be trusted. As with certificates, 

a tool  to address this problem is a forward-secure signature 
scheme.
 We should note that although the problems mentioned 
throughout this section focus on what happens to servers, 
many are also applicable to clients.  It bears repeating that 
even users that do not run servers may be affected  by the  
Heartbleed  bug. Through a Reverse Heartbleed attack, a 
user who has been tricked into  making a SSL/TLS connection 
to a malicious server mounting the  attack  could end  up 
with his or her long-term secret key stolen. Any application 
that uses this compromised secret key would be affected.  
For example, if the secret key is also used for signing digital 
documents, all previously generated signatures would no 
longer be trustworthy.  Forward- secure signatures can help 

address this particular problem.
 CREDENTIALS ARE STOLEN FROM MEMORY.   
If an adversary  can obtain certain credentials directly from 
memory, the damage depends on how the credentials are 
to be used. We discuss the two most common types of 
credentials here.
 Username and password. Although this  information  
allows  the  adversary to log in as a legitimate user to the 
targeted services, in practice the damage resulting from 
the exposure of a user’s password  is often  not  limited  to  
only the services currently under attack. The reason  is that  
many users reuse their passwords for many different  
services, consequently rendering those services vulnerable  
also. A  cryptographic  tool that  could have  helped  prevent  
this is password-based authenticated key exchange described 
in Section 5.4.
 Credit card number and other info. If an adversary 
can get all of the information necessary to charge a credit 
card in  an online  transaction  (in  general, this  includes  
the  credit  card number, the last three digits of the sequence 
of numbers on the back of the card, and the expiration 
date), then it can charge any purchases to the card at will, 
until the  card is cancelled.  A cryptographic tool that could 
have helped prevent this is limited-use credit card numbers. 
Such numbers are described in Section 5.5.
 A PSEUDORANDOM NUMBER GENERATOR 
SEED IS STOLEN FROM MEMORY.  Most programs 
that implement secure functionality  need to  use randomness.  
One of the most common ways to programmatically generate 
randomness is to use a pseudorandom bit generator  (PRG). 
This primitive requires that a seed, a short sequence of 
random bits, is given as an input so that a longer sequence 
of pseudorandom bits can be deterministically computed 
and output. If the output is computed deterministically 
without using any secrets (such as hidden state or a secret 
key), then anyone in possession of the right seed can easily 
compute the output.
 If the stolen seed had been used to generate a session 
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key, then the adversary can use  the  seed  to  compute  the  
session key then decrypt any ciphertext it has collected for 
this session. A cryptographic tool that could have addressed 
this is a forward- secure pseudorandom bit generator. Such 
generators are described in Section 5.3.
 A SESSION TICKET IS STOLEN FROM MEMORY. 
A session ticket key is used to protect a session ticket 

containing state information about the current connection 
so that the server can resume a SSL/TLS session without 
performing the full handshake, thus reducing the server  
load. If a session ticket key is stolen, then an adversary can 
(1) decrypt previously-issued session tickets and (2) generate 
new session tickets. For the first threat, since session tickets 
contain state information about a session, the potential 
damage depends on what the server decides to include  in 
a ticket.  The second threat, however, is unlikely to be 
much of an issue since session ticket keys are often freshly 
generated at server reboots.
 Clearly, there are other types of information that, once 
stolen from memory, can cause damage  to the victim. We 
only consider the ones mentioned above since they have 
the most damaging repercussions.
 A CAVEAT.  Although there are many types of 
sensitive data that, once stolen, can lead to extensive  
damage as discussed  above, we emphasize  here  that,  in 
general,  it is not a simple matter for an attacker to successfully 
pick and choose the type of data to steal at will. In fact, 
when the Heart- bleed bug was first  discovered,  the  initial 
impression among security experts was that a server’s  
long-term  secret  key could not be stolen through Heartbleed, 
although, as it happened,  this  impression was quickly 
proven  to be false [20]. Given  the level  of sophistication  
required  of an adversary  to ensure that the desired data 
end up residing in the appropriate region of the memory 
in order to mount the attack, it would be arguably much 
simpler and more fruitful for an attacker to instead resort 
to social engineering attacks such as phishing.

5. Prevention through Cryptography

 In this section, we discuss what could have been: what 
kinds of damage could be mitigated if certain types of 
cryptosystems had been deployed. Although it is no secret 
that these cryptosystems exist and that they could help 
tremendously in the event of secret exposure such as the 
Heartbleed attack, the fact, unfortunately, is that most 
systems do not deploy these cryptosystems.
 Also, as seen in the previous section, many of the  
cryptographic tools we mention are forward-secure primi-
tives. In terms of  exposure-resilient  cryptographic  tools, 
we limit the  scope  of this  paper to  these primitives for 
brevity and simplicity. However, we point out here that 
forward security  is not the only technique that can deal 
with exposure of secrets.  Other tools include key-insulated 
cryptosystems [14], intrusion-resilient cryptosystems, 
threshold cryptosystems [11, 12], and proactive cryptosystems  
[15]. The first two  groups require  an additional  computational  
device to achieve some weaker forms of security before 

and after the secret exposure, rather than only before the 
exposure as is the case with forward security. The last two 
groups require that multiple (usually more than two) parties 
work closely together when carrying out  a task.  These  
tools  are  also valid alternatives for dealing with Heart-
bleed. They are, however, likely to be more complicated 
to set up in practice compared to forward-secure cryptosystems 
since they require additional coordination between a server 
and a helper device or between multiple servers.

 5.1 Forward-secure key  exchange

 The helpful guanrantee with forward-secure key 
exchange is that an adversary who obtains the server’s 
long-term secret key at time t still would not know any 
session key that was generated before time t.
 The most popular KE protocol for SSL/TLS among 
server system administrators is the RSA-based KE protocol. 
In this protocol, the client chooses a value for the session 
key K, encrypts K with the server’s public  key  pk, then  
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sends  the  result  to the server.  Upon receiving  this result, 
the server decrypts it using the long-term secret key sk to  
obtain K. Consequently, RSA-based KE protocol  does not  
offer forward security: if the long-term secret key sk becomes 
exposed at some point, an adversary who has captured the 
data exchanged between the client and the server in the 
past can use sk to decrypt the appropriate segment of the 
protocol flows to obtain K and can in turn use K to decrypt 
the data encrypted with K.
 In contrast, the KE protocol implemented for OpenSSL 
that is forward secure is the Diffie-Hellman Ephemeral 

(DHE) protocol  [13]. Unfortunately,  this  protocol is not  
popular among system  administrators.  The  most  commonly 
cited  reason  is the claim that it is too computationally 
intensive.  DHE is based on the basic Diffie-Hellman key 
exchange protocol shown in Fig. 1. The session key obtained 
at the end of the protocol is K.
 The basic protocol shown in Fig. 1 does not keep 
adversary A from pretending to be the client or the server. 
For example, A can pretend  to  be a server  “S”  by simply  
engaging in the protocol exchanges with the client using 
“S” as its name. Digital signatures  is used to address this 
problem: the server signs its protocol flow using its long- 
term secret key; the client then verifies, using the server’s 
public key, that the protocol flow it receives has indeed  
been generated by the server.

 5.2  Forward-secure digital signatures

 As previously discussed, when a long-term secret key 
sk is exposed, the authenticity of all signatures purportedly 
generated using sk can no longer be trusted. This includes 
all certificates  signed by the  owner of sk. They must now 
be revoked. This problem can be addressed via forward-
secure digital signatures.
 In  a  forward-secure digital signature scheme [3], 
time  is divided  into  periods, e.g. months,  days, or weeks. 
The forward security  guarantee is that, despite  a long- term 
secret key exposure at time period t, signatures  generated  
before  t can still  be trusted  while those  generated  during 
and after t cannot be. The crux lies in the deterministic key 

update  algorithm. Suppose that initially the server’s secret 
and public keys are  sk and pk, respectively.  At each time 
period, sk gets updated while pk remains fixed.  Since  pk 
is unchanged,  anyone can verify signatures using the  single 
value of pk regardless of which time period the signature 
was generated. The secret key update  algorithm  is designed  
to  be easily computed going forward (e.g. from time period 
t to t + 1) but difficult to go backward (e.g. from t + 1 to 
t). Consequently, if adversary A obtains sk

t
, it can generate 

signatures on behalf of the server for time periods after t 
but not before (assuming that the secret keys for the time 
periods before t have been properly erased). Thus, certificates 
that have been issued (i.e. signed) before t remain  trustworthy,  
and revocation can be avoided.

 5.3  Forward-secure pseudorandom bit generator

 Originally proposed by Bellare and Yee [5], a forward-
secure pseudorandom bit generator  (FS PRG) takes  a state  
and returns the next state and the output. The way it is used  
is the  following. The initial state is taken  to  be the  original 
random seed. When a pseudorandom bits is needed, one 
invokes the PRG to update the seed and to obtain the 
pseudorandom bits to be used. The security guarantee is 
that, if adversary A obtains the current state s, it still would 
not  be  able to  distinguish  pseudorandom bitstrings  that  

Fig. 1.  The basic Diffie-Hellman  key exchange. The cyclic 
group G generated by g is of order m. We make 
G, g, and m public. The notation s  S means 
the value assigned to s is chosen uniform randomly 
from the set S. An arrow   denotes an assignment.
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have  been output  prior to the exposure of the seed from 
outputs of a random function. This implies that, at the very  
least,  A must  not  be able to  obtain the states in the time 
periods prior to the exposure.
 In a Heartbleed  attack,  if an adversary A obtains the 
current seed that is used by other cryptographic algorithms, 
for example to  generate  the  session  key,  it can of course 
compromise the security of the current session. But if an 
FS PRG is used, A would not be able to derive the session 
keys for time periods prior to the break-in, thus leaving the 
security of these sessions intact.

 5.4     Password-Based Authenticated Key Exchange

 As discussed, since most  clients  do not have certificates, 
the most common authentication mechanism often involves 
the user sending his or her username and password to the 
server via SSL/TLS. In a Heartbleed attack, if adversary 
A obtains the username and password  of a user  from the  
server’s memory, the user has no recourse other than to 
change the password.
 If a password-based authenticated key exchange 

(PAKE)  protocol is used, the user would not need to send 
the username and password over to the server  and yet be 
able to  establish  a secret  session  key.  In a PAKE protocol, 
the server and the user initially share  a secret  password  
pw, perhaps through a registration protocol or through 
out-of-band communication. Then, after the protocol 
completes, the user and the server end up with a secret 
session key. Many PAKE protocols have been proposed 
over the years. See for example [1, 4, 7–10].

  5.5  Limited-use  credit  card numbers

 A credit  card number  is a valuable piece of information. 
One can make purchases by giving a store a credit card 
number  along with other accompanying information such 
as the appropriate expiration date and a “card security code” 
or a “card verification code,” a 3-digit code found on the  
actual credit card itself. In an online purchase, all these 
pieces of information are sent to the server of the merchant. 

If the server is under a Heartbleed attack at the time the 
transaction occurs, an adversary can obtain this information 
from the server’s memory.
 Efforts have been made to limit the damage caused 
by credit card number exposure by limiting  how long or 
how often  a single credit card number can be used. These 
credit  card numbers are sometimes called disposable credit 

cards. There are many approaches to implement this concept 
[16, 19, 24]. We discuss one simple  example here. Rubin 
and Wright [16] propose that a user and his or her card 
issuer share a secret key K  and use it to  authenticate  and 

encrypt the credit card number along with the rest of the 
authorizing information and restrictions regarding  the 
current  purchase.  The resulting ciphertext C can be used 
in place of the credit card number during purchases.
 We emphasize that in this case the information needs 
to be both authenticated and encrypted. Secrecy is necessary 
because the card number and other information must be 
kept  secret.  Authenticity  is necessary  because C is used  
as a token, and a token that can be minted by anyone, 
including in particular an adversary, is not very useful.
 Furthermore, a scheme such as this needs a way to 
prevent a replay  attack in which an adversary  can simply  
capture the token C and simply reuse it to make other 
purchases. Including timestamps and other purchase-related 
information into the payload to be authenticated and 
encrypted can address this problem. Rubin and Wright 
further discuss this issue in [16].
 We note here that,  just like any other technical solution 
to real-world problems, there are usability issues associated 
with disposable credit cards. Consequently, more than a 
decade after their conception, they are still not prevalent.

6. Conclusion

 Over the years, secret exposures have become frequent 
to a point where we should consider them  to  be common 
occurrences rather than rare events. Mechanisms that can 
mitigate secret exposures are of more importance now than 
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ever. Cryptographers must forge ahead and come up with 
practical and efficient methods to deal with secret leakage. 
Practitioners must consider proposals that may at  first  
glance  seem esoteric and give security the high priority it 
deserves.
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