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Abstract

  A well-known benchmark problem modeled by the Navier-Stokes equations is the buoyancy-driven flow 
problem in square cavity, of which two horizontal sides are insulated and two vertical sides are kept at two different 
temperatures. Previously, the finite difference method has been successfully used to solve this problem. However, extesion 
of the finite difference method to more complicated domain may be difficult. In this paper, a mesh-less method that can 
work on irregular grid is proposed as an alternative method for this problem. This method is used to solve the problem 
in the stream function-vorticity formulation. It is shown that the accuracy of the solution depends on the implementation 
of the vorticity boundary condition. Two schemes for discretizing the vorticity boundary condition in this formulation 
are proposed. The scheme that expresses boundary vorticity in terms of derivatives of stream function and velocity is 
shown to produce more accurate solutions than the scheme that expresses boundary vorticity in terms of derivatives of 
stream function. 
Keywords : Navier-Stokes, natural convection, meshless, muliquadrics

1. Introduction

 The finite difference method is an efficient method 
for problems having simple domain shapes. When the 
problem domain is irregular, however, the implementation 
of the finite difference method may be awkward. Although 
the finite element method can handle complex problem 
domains better, this method has its own disadvantages that 
include the requirements of mesh generation and the weak-
form formulation of the problem. Recently, a number of 
alternative methods known as meshless methods have 
gained interest in the research community [1]. These 
methods do not require time-consuming mesh generation, 
and have been shown to be capable of solving various 
computational mechanics problems. Meshless methods 
known as point interpolation methods are analogous to the 
finite difference method in that they approximate a partial 
derivative of a function in terms of functional values at 
neighboring nodes. Different point interpolation methods 
use different functions as interpolation functions. When 
the interpolation function is the radial basis function known 
as multiquadrics, the method is known as the local 

multiquadric collocation method [2]. This method has been 
used to solve certain linear and nonlinear problems [2 – 4].
The natural convection problem in a square cavity with 
two horizontal sides insulated and two vertical sides 
maintained at two different temperatures is to be referred 
to in this paper as the buoyancy-driven flow problem in 
square cavity. Although this problem is simple to describe 
and formulate, it does not have the analytical solution. Its 
simplicity makes it a popular problem for testing numerical 
methods. The buoyancy-driven flow problem in square 
cavity may be solved in one of the three well-known 
formulations: the primitive-variable formulation, the 
velocity-vorticity formulation, and the stream function-
vorticity formulation. The stream function-vorticity 
formulation is the simplest because it contains only three 
dependent variables: stream function, vorticity and 
temperature.  Since the boundary condition of the problem 
is usually not directly specified in terms of vorticity, this 
formulation must incorporate a scheme for computing 
boundary vorticity, which may influence the accuracy of 
the solution significantly. Boundary vorticity may be 
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fluid temperature is uniformly T
0
. At time t′ > 0 , part of 

the boundary is subjected to isothermal boundary condition 
T

w
, part of boundary is kept at the initial temperature, and 

the other part of the boundary is insulated.
 In Boussinesq approximation, ρ is assumed to be 
constant in Eqs. (2) and (3) except in the source term of 
Eq. (3), where ρ is approximated as
 ρ  =   ρ

0
 –ρβ(T′ – T

0
)                    (5)

and thermal expansion coefficient β is defined as

 β   = 
pT









∂

ρ∂
ρ

−
1         (6)

Insert ρ from Eq. (5) into the source term of Eq. (3), and 
combine the resulting equation with Eqs. (1) and (2) into 
two equations of stream function (ψ′) and vorticity (ω′):
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and Eq. (4) can be rewritten as
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where
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y

u

x

v

′∂

′∂
−

′∂

′∂        (10)

  u′   =  
y′∂
ψ′∂                     (11)

  v′   =  
x′∂
ψ′∂

−      (12)

 Assume that L is the characteristic length scale for 
the problem. Let’s define the following dimensionless 
variables: x = x′/L, y = y′/L, t = αt′/L2, u = u′L/α, v = 
v′L/α, T = (T ′– T

0
)/(T

w
 – T

0
), ω = αω′/L2, and ψ = ψ′/α. 

expressed in terms of stream variables, vorticity or velocity 
components at the boundary and nearby nodes [5 – 7]. 
 This paper is concerned with the implementation of 
the local multiquadric collocation method for solving the 
buoyancy-driven flow problem. First, details of the 
discretization of the governing equations and boundary 
conditions will be described. Then the local multiquadric 
collocation method for solving these equations will be 
presented. Two different schemes for computing boundary 
vorticity will be considered. The first scheme expresses 
boundary vorticity in terms of stream functions values, and 
the second scheme expresses boundary vorticity in terms 
of boundary velocity components and stream functions. It 
will be demonstrated that accurate solutions on irregular 
grids can be obtained by using the local multiquadric 
collocation method. Furthermore, it will be shown that the 
second scheme for computing boundary vorticity yields 
more accurate solutions than the first scheme.

2. Governing Equations and Boundary Conditions

 The two-dimensional natural convection is gov-erned 
by the following continuity, momentum and energy equations:

                           
y

v

x

u

′∂

′∂
+

′∂

′∂

 

=   0        (1)

   







′∂

′∂′+
′∂

′∂′+
′∂

′∂
ρ

y

u
v

x

u
u

t

u  =

                         










′∂

′∂
+

′∂

′∂
µ+

′∂
∂

−
2

2

2

2

y

u

x

u

x

p          (2)

    







′∂

′∂′+
′∂

′∂′+
′∂

′∂
ρ

y

v
v

x

v
u

t

v

 

=     

                       
g

y

v

x

v

y

p
ρ−











′∂

′∂
+

′∂

′∂
µ+

′∂
∂

−
2

2

2

2

           (3)

      
y

T
v

x

T
u

t

T

′∂

′∂′+
′∂

′∂′+
′∂

′∂

 

=  










′∂

′∂
+

′∂

′∂
α

2

2

2

2

y

T

x

T     (4)

where ρ is density, µ is dynamic viscosity, α is thermal 
diffusivity, and g is gravitational acceleration. Initially, the 
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Equations (7) – (9) may be written in dimensionless forms 
as
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where Rayleigh number is R
a
 = gβ(T

w
 – T

0
)L3/να, and 

Prandtl number is Pr = ν/α. The dimensionless problem 
of natural convection the square cavity of unit width is 
illustrated in Fig. 1. It can be seen from Fig. 1 that boundary 
conditions for T and ψ are completely specified. Boundary 
condition for ω is not specified, and must be determined 
from other variables.

3. Local Multiquadric Collocation Method

 Let node 1 be where a partial derivative of a function 
f is to be discretized. Consider a group of n interpolation 

nodes, which include node 1 and other n – 1 nodes that 
may be selected by their proximity to node 1 or by another 
criterion. A given function value at each node may be 
approximated by
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is the radial basis function known as multiquadrics. The 
constant c is the shape parameter. Equation (16) is a 
component of the matrix equation,
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r

 
= Φ ar      (18)

which can be solved for the vector of coefficients.
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Once   has been determined, the approximation of a partial 
derivative of f with respect to x or y can be expressed in 
terms of function values at all nodes. For example,
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The first row of this matrix equation is thus the desired 
discretization of the partial derivative of f with respect to 
x at node 1. Therefore, this method can be used to express 
partial derivatives of f at any node i in terms of values of 
f at node i and n-1 other nodes.
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Figure 1  Boundary conditions for the buoyancy-driven 
flow problem in a square cavity of unit width.
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Right hand sides of Eqs. (22) – (25) are summations over 
all nodes j in the domain. It should be noted that, in each 
of Eqs. (22) – (25), most of coefficients are zero except 
for the n coefficients at corresponding n selected nodes.
 Discretization of Eqs. (12) – (14) at an interior node 
i using the local multiquadric collocation method and the 
implicit time-stepping scheme results in the following 
nonlinear algebraic equations:
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where superscript m denotes value at time m∆t. In addition 
to Eqs. (26) – (28), discretized boundary conditions for ψ, 
T, and ω are needed. According to Fig. 1,

             ( )m
iψ

 
=   0     (29)

 for any boundary node i,   

      ( )m
iT  

=   1     (30a)
 for boundary node i on the left wall, 

      ( )m
iT  

=   0     (30b)
for boundary node i on the right wall

           ( )m
iT  

=  

( )

ii

ij

m
jij

b

Tb∑
≠−        (30c)

for boundary node i on the horizontal walls. 
 For the purpose of computing vorticity at boundary 
node i, n – 1 interior nodes that are nearest to node i are 
selected as shown in Fig. 2. Two schemes for determining 
the vorticity boundary condition are considered here. The 

first scheme uses the relation between ω and ψ from Eq.  
(13), which results in

                  ( )m
iω

 
= ( )∑ ψ− m

jijc          (31a)
on the vertical walls,
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on the horizontal walls. The second scheme uses the relation 
between ω and velocity components from Eq.  (10), which 
results in
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on the horizontal walls because boundary velocity is zero. 
Velocity components at interior node j in Eq. (32) are 
computed from Eqs. (11) and (12).

      ( )m
ju

 
=  ( )∑ ψ m

kjkb      (33)

      ( )m
jv

 
=   ( )∑ ψ− m

kjka    (34)
The system of equations formed by Eqs. (26) – (30) and 
either Eq. (31) or Eqs. (32) – (34) must be solved by 

iteration. The iteration process starts with  ( )0

iψ  = ( )0

iT    =   
( )0

iω
 
= 0 at interior nodes. The successive overrelaxation 

method (SOR) is then used to find  ( )1

iψ , ( )1

iT  , ( )1

iω . The 
iteration process is continued until convergence when the 
solution reaches the steady state.

Figure 2 Six nodes (designated by solid circles) 
used for discretization of the vorticity 
boundary condition.
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4. Benchmark Solutions 

 Since exact solutions of the buoyancy-driven flow 
problem in square cavity are not available, numerical 
solutions by the multiquadric collocation method must be 
compared with the benchmark solutions. Erturk and Gokcol 
[8] solved to the lid-driven flow problem by the finite 
difference method. They obtained highly accurate solutions 
by using the vorticity boundary condition suggested by 
Stortkuhl et al. [6]. Their Fortran codes are available at the 
website http://www.cavityflow.com. These codes were 
modified by the author of this paper to solve the buoyancy-
driven flow problem in square cavity. Results on 161 x 
161 grid obtained for velocity components (u and v) and 
heat flux (q = ∂T/∂x) at selected points are considered to 
be benchmark solutions. Figure 3 shows these results for 
Pr = 0.7 and Ra = 1000, 10000, and 100000.

5. Results and Discussion 

 As mentioned earlier, one advantage of the local 
multiquadric collocation method and most other meshless 
methods is the freedom to place nodes randomly in the 
domain. A random node arrangement is created by positioning 
each interior node i at (x

i
, y

i
) = (x

0i 
+ 0.3r

1
∆, y

0i
 + 0.3r

2
∆), 

where (x
0i
, y

0i
) is the position of node i in the uniform 

arrangement in the square grid having ∆ as the grid spacing, 
and r

1
 and r

2
 are random numbers between –0.5 and 0.5. 

Note that ∆ = 1/(√N – 1), where N is the total number of 
nodes. The number of nodes (n) used for collocation is 6.
 It is found that solutions to the buoyancy-driven flow 
problem by the local multiquadric collocation method on 
irregular grids are satisfactorily accurate because these 
solutions produce similar distributions of u, v, and q to the 
distributions shown in Fig. 3. For the purpose of assessing 
the degree of accuracy, it is useful to define error as the 
absolute value of the difference between the solution by 
the local multiquadric collocation method (f) and the 
benchmark solution (f

e
) divided by f

e
:

Figure 3  Distributions of (a) the horizontal velocity 
component along the vertical line passing the 
center of the square cavity; (b) the vertical 
velocity component along the horizontal line 
passing the center of the square cavity; and (c) 
the heat flux along the left wall of the square 
cavity for Ra = 1000, 10000, and 100000 from 
the benchmark solutions.

(a)

(b)

(c)
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Figure 4 Comparison between errors in (a) the horizontal velocity component; (b) the vertical velocity component; and 
(c) the heat flux of solutions by the local multiquadric collocation method for Pr = 0.7 and Ra = 1000 that use 
the first scheme and the second scheme of discretizing the vorticity boundary condition.

(a)

(b)

(c)
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Figure 5 Comparison between errors in (a) the horizontal velocity component; (b) the vertical velocity component; and 
(c) the heat flux of solutions by the local multiquadric collocation method for Pr = 0.7 and Ra = 10000 that 
use the first scheme and the second scheme of discretizing the vorticity boundary condition.

(a)

(b)

(c)
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Figure 6 Comparison between errors in (a) the horizontal velocity component; (b) the vertical velocity component; and 
(c) the heat flux of solutions by the local multiquadric collocation method for Pr = 0.7 and Ra = 100000 that 
use the first scheme and the second scheme of discretizing the vorticity boundary condition.

(a)

(c)

(b)
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f
 = 

e

e

f

ff −
                                         (35)

where f represents u, v, or q. Errors of solutions by the 
local multiquadric collocation method are computed for 
Pr = 0.7 and Ra = 1000, 10000, and 100000 on five random 
node arrangements. Solutions are produced in two sets, 
which use two schemes for determining the vorticity 
boundary condition. The first scheme uses Eq. (31), whereas 
the second scheme uses Eqs. (32) – (34).
 Figures 4 – 6 show distributions of ε

u
, ε

v
, and ε

q
 for 

Ra = 1000, 10000, and 100000, respectively. In each figure, 
different symbol represents different random node 
arrangement. The number of nodes used to obtain results 
in Fig. 4 is 1681. Since higher Ra requires more nodes to 
obtain solutions of comparable accuracy, the numbers of 
nodes used to obtain results in Fig. 5 and 6 are 3721 and 
6561, respectively. It can be seen that all five random node 
arrangements yield satisfactorily accurate solutions when 
either the first or the second scheme for determining the 
vorticity boundary condition is used. Comparisons of both 
schemes reveal that the second scheme produces more 
accurate solutions than the first scheme. It should be noted 
that solutions are less accurate near the sides of the cavity 
and near the center of the cavity. 
 Previous works [2, 4] indicate that the accuracy of 
the local multiquadric collocation method in solving certain 
linear problems is relatively insensitive to the shape 
parameter c in Eq. (17), but can be improved by decreasing 
∆ or increasing n. It is found that the accuracy of the local 
multiquadric collocation method in solving the buoyancy-
driven flow problem can be increased by decreasing ∆. 
Although increasing n may result in more accurate solutions 
for linear problems, it may not result in more accurate 
solutions for nonlinear problems because converged solutions 
may not be found. It is therefore suggested that, as far as 
nonlinear problems are concerned, n should be kept at 6 
so that the iteration process leads to convergence. If more 

accurate solutions are desired, smaller ∆  should be used. 

6. Conclusions

 The buoyancy-driven flow problem in square cavity, 
of which two horizontal sides are insulated and two vertical 
sides are kept at two different temperatures, is solved by 
a meshless method known as the local multiquadric 
collocation method. Two schemes for discretizing the 
vorticity boundary condition are considered. The first 
scheme expresses boundary vorticity in terms of derivatives 
of stream function, whereas the second one expresses 
boundary vorticity in terms of derivatives of stream function 
and velocity. Solutions by the local multiquadric collocation 
method on irregular grids are compared with the benchmark 
solutions for Pr = 0.7 and Ra = 1000, 10000, and 10000. 
It is found that both schemes can yield accurate solutions, 
and that errors of solutions in the second scheme are less 
than those in the first scheme.
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